斐波那契數列的公式是什麼啊,比如就是第n項用帶n的公式表示

2022-09-23 09:21:48 字數 6499 閱讀 7270

1樓:科學喵

在數學上,斐波那契數列以如下被以遞推的方法定義:f(1)=1,f(2)=1, f(n)=f(n-1)+f(n-2)(n>=3,n∈n*)。

斐波那契數列(fibonacci sequence),又稱**分割數列、因數學家列昂納多·斐波那契(leonardoda fibonacci)以兔子繁殖為例子而引入,故又稱為“兔子數列”,指的是這樣一個數列:1、1、2、3、5、8、13、21、34、……

如果設f(n)為該數列的第n項(n∈n*),那麼這句話可以寫成如下形式::f(n)=f(n-1)+f(n-2),顯然這是一個線性遞推數列。

2樓:風雅之風

an+1-an=an-1

x^2-x=1 解得 x=(1±√5)/2所以an=a(1+√5)/2)^n+b((1±√5)/2)^na1=a2=1 帶入、求得a,b、

即得an的公式、、、

好像是這麼做的、、、

我也不知道為什麼、、、老師說的、、

3樓:可愛的啊信

回答你好,在數學上,斐波那契數列以如下被以遞推的方法定義:f(1)=1,f(2)=1, f(n)=f(n-1)+f(n-2)(n>=3,n∈n*)。斐波那契數列(fibonacci sequence),又稱**分割數列、因數學家列昂納多·斐波那契(leonardoda fibonacci)以兔子繁殖為例子而引入,故又稱為“兔子數列”,指的是這樣一個數列:

1、1、2、3、5、8、13、21、34、……如果設f(n)為該數列的第n項(n∈n*),那麼這句話可以寫成如下形式::f(n)=f(n-1)+f(n-2),顯然這是一個線性遞推數列。擴充套件資料:

斐波那契數列的定義者,是義大利數學家列昂納多·斐波那契(leonardo fibonacci),生於公元1170年,卒於1250年,籍貫是比薩。他被人稱作“比薩的列昂納多”。1202年,他撰寫了《算盤全書》(liber abacci)一書。

他是第一個研究

了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點於阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯等地研究數學。

另外斐波納希還在計算機c語言程式題中應用廣泛。

4樓:百度網友

a1=1,a2=1,an=a(n-1)+a(n-2)(n≥3,n∈n)

1、1、2、3、5、8、13、21、34、、、、

5樓:百度網友

(((1+√5)/2)^n-((1-√5)/2)^n)/√5

斐波那契數列的公式是什麼

6樓:匿名使用者

這個數列是由13世紀義大利斐波那契提出的的,故叫斐波那契數列。該數列由下面的遞推關係決定:

f0=0,f1=1

fn+2=fn + fn+1(n>=0)

它的通項公式是 fn=1/根號5(n屬於正整數)

補充問題:

菲波那契數列指的是這樣一個數列:

1,1,2,3,5,8,13,21……

這個數列從第三項開始,每一項都等於前兩項之和

它的通項公式為:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根號5】

很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。

該數列有很多奇妙的屬性

比如:隨著數列項數的增加,前一項與後一項之比越逼近**分割0.6180339887……

還有一項性質,從第二項開始,每個奇數項的平方都比前後兩項之積多1,每個偶數項的平方都比前後兩項之積少1

如果你看到有這樣一個題目:某人把一個8*8的方格切成四塊,拼成一個5*13的長方形,故作驚訝地問你:為什麼64=65?

其實就是利用了菲波那契數列的這個性質:5、8、13正是數列中相鄰的三項,事實上前後兩塊的面積確實差1,只不過後面那個圖中有一條細長的狹縫,一般人不容易注意到

如果任意挑兩個數為起始,比如5、-2.4,然後兩項兩項地相加下去,形成5、-2.4、2.

6、0.2、2.8、3、5.

8、8.8、14.6……等,你將發現隨著數列的發展,前後兩項之比也越來越逼近**分割,且某一項的平方與前後兩項之積的差值也交替相差某個值

僅供參考。

7樓:匿名使用者

斐波那契數列:1,1,2,3,5,8,13,21……

如果設f(n)為該數列的第n項(n∈n+)。那麼這句話可以寫成如下形式:

f(1)=f(2)=1,f(n)=f(n-1)+f(n-2) (n≥3)

顯然這是一個線性遞推數列。

通項公式的推導方法一:利用特徵方程

線性遞推數列的特徵方程為:

x^2=x+1

解得x1=(1+√5)/2, x2=(1-√5)/2.

則f(n)=c1*x1^n + c2*x2^n

∵f(1)=f(2)=1

∴c1*x1 + c2*x2

c1*x1^2 + c2*x2^2

解得c1=1/√5,c2=-1/√5

∴f(n)=(1/√5)*【√5表示根號5】

通項公式的推導方法二:普通方法

設常數r,s

使得f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]

則r+s=1, -rs=1

n≥3時,有

f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]

f(n-1)-r*f(n-2)=s*[f(n-2)-r*f(n-3)]

f(n-2)-r*f(n-3)=s*[f(n-3)-r*f(n-4)]

……f(3)-r*f(2)=s*[f(2)-r*f(1)]

將以上n-2個式子相乘,得:

f(n)-r*f(n-1)=[s^(n-2)]*[f(2)-r*f(1)]

∵s=1-r,f(1)=f(2)=1

上式可化簡得:

f(n)=s^(n-1)+r*f(n-1)

那麼:f(n)=s^(n-1)+r*f(n-1)

= s^(n-1) + r*s^(n-2) + r^2*f(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*f(n-3)

……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*f(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公差的等比數列的各項的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解為 s=(1+√5)/2, r=(1-√5)/2

則f(n)=(1/√5)*

8樓:匿名使用者

121 121 121 110 120 122 132 123 456 789

9樓:科學剪髮

斐波那契用途廣泛美髮行業已經用於髮型設計,有了資料比例堆積才能剪出更有美感的髮型,原創曾建華斐波那契科學剪髮技術。

斐波那契數列怎麼求它的第幾項是多少?

10樓:暗黑班吉拉

答案是肯定有的!!!!

事實上任意的:

a(n+2)=aa(n+1)+ban形式的相鄰3項的遞推式,都可以解出其通項公式

解決這類問題的方法主流的有兩種:1.待定係數法 2.特徵方程法

下圖便是待定係數法解此類問題的完備性與特徵方程的的證明

我以一個特殊的例子為lz講解一下特徵方程法的一個應用

不難發現這個數列有兩個非常顯著的特點就是:a1=a2=1且an=a(n-1)+a(n-2)

其實這就是著名的斐波那契數列 其從第3項其後項為前兩項之和

這就相當於a(n+2)=aa(n+1)+ban形式的a,b均為1的特殊情況

通過下圖所證明的“特徵方程”法可知:

解an=a(n-1)+a(n-2)的特徵方程x^2=x+1得

x1,x2分別為(1+跟5)/2和(1-跟5)/2

則有an=α[(1+跟5)/2]^n+β[(1-跟5)/2]^n

其中α與β為待定係數,可代入a1,a2來解得α=1/跟5,β=-1/跟5

即an=(1/跟5)

這就是斐波那契數列的通項公式!!!

那麼對於a(n+2)=aa(n+1)+ban形式的相鄰3項的遞推式

只需要解其特徵方程x^2=ax+b

①僅有1個實根:為等差數列

可待定係數設an=[a1+(n-1)d]x^(n-1)

再由a2確定d的值

②有兩個不相等的實根:

可待定係數設an=α(x1)^n+β(x2)^n

再由a1,a2確定α和β的值

若lz還有什麼地方不明白的可追問

希望我的回答對你有幫助

11樓:

告訴你一個數學軟體,mathematica,輸入命令:table[fibonacci[n], ]結果:要求第1000項,輸入命令:

fibonacci[100] 顯示結果:354224848179261915075

學了《組合數學》這門課以後,這個數列的通項公式很容易求出:a[n] = ( x^n - y^n) / c, 其中x=(1+sqrt(5))/2, y=(1-sqrt(5))/2 ,c=sqrt(5). 注:

x,y是方程x^2=x+1的兩個根(注意比較通項公式a[n]=a[n-1]+a[n-2]的係數),而 sqrt(5) 表示根號5.

斐波那契數列的第100個數是多少

12樓:女寢門後賣香蕉

斐波那契數列的第100個數是3.542248e20。

斐波那契數列通項公式:

代入n=100,得第一百項等於3.542248e20,其結果是超過初中知識範圍的,只記住通項公式就行。

以如下被以遞推的方法定義:f(1)=1,f(2)=1, f(n)=f(n-1)+f(n-2)(n>=3,n∈n*)

在現代物理、準晶體結構、化學等領域,斐波納契數列都有直接的應用,為此,美國數學會從1963年起出版了以《斐波納契數列季刊》為名的一份數學雜誌,用於專門刊載這方面的研究成果。

13樓:匿名使用者

求出這個數列的同項即可

通項式求法: 【斐波那挈數列通項公式的推導】

斐波那契數列:1,1,2,3,5,8,13,21……

如果設f(n)為該數列的第n項(n∈n+)。那麼這句話可以寫成如下形式:

f(0) = 0,f(1)=f(2)=1,f(n)=f(n-1)+f(n-2) (n≥3)

顯然這是一個線性遞推數列。

通項公式的推導方法一:利用特徵方程

線性遞推數列的特徵方程為:

x^2=x+1

解得x1=(1+√5)/2, x2=(1-√5)/2.

則f(n)=c1*x1^n + c2*x2^n

∵f(1)=f(2)=1

∴c1*x1 + c2*x2

c1*x1^2 + c2*x2^2

解得c1=1/√5,c2=-1/√5

∴f(n)=(1/√5)*【√5表示根號5】

通項公式的推導方法二:普通方法

設常數r,s

使得f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]

則r+s=1, -rs=1

n≥3時,有

f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]

f(n-1)-r*f(n-2)=s*[f(n-2)-r*f(n-3)]

f(n-2)-r*f(n-3)=s*[f(n-3)-r*f(n-4)]

……f(3)-r*f(2)=s*[f(2)-r*f(1)]

將以上n-2個式子相乘,得:

f(n)-r*f(n-1)=[s^(n-2)]*[f(2)-r*f(1)]

∵s=1-r,f(1)=f(2)=1

上式可化簡得:

f(n)=s^(n-1)+r*f(n-1)

那麼:f(n)=s^(n-1)+r*f(n-1)

= s^(n-1) + r*s^(n-2) + r^2*f(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*f(n-3)

……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*f(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(這是一個以s^(n-1)為首項、以r^(n-1)為末項、r/s為公差的等比數列的各項的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解為 s=(1+√5)/2, r=(1-√5)/2

則f(n)=(√5)*